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Opening remarks on path towards Inertial Fusion Energy (IFE)

Community needs to work together to provide the technical case for
funding an IFE program.

IFE program should nurture competition, with judgments made on the

basis of technical progress and the potential of the various approaches to
IFE.

Direct-drive with lasers looks very attractive for IFE, the physics and
needed technologies are mature and advancing.

KrF provides physics advantages for direct drive.

KrF’'s demonstrated performance is competitive with solid state lasers as
a high-rep-rate durable, efficient IFE driver. (on several important
parameters KrF technology leads)



Direct Laser Drive Is a better choice for Energy
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« ID Ignition being explored on NIF

» Providing high enough gain for
pure fusion energy is challenging.

« DD Ignition physics can be explored on
NIF.

» More efficient use of laser light, and
greater flexibility in applying drive
provides potential for much higher gains.



KrF light helps Direct Drive target physics (1)
Provides the deepest UV light of all ICF lasers (A=248 nm)

Higher thresholds for laser-plasma instability
Deeper UV —> Higher mass ablation rates and pressure

Higher hydrodynamic efficiency

Higher absorption fraction

351 nm laser (e.g. NIF) KrF
lower drive pressure higher drive pressure

O

implosion KrF's deep UV allows:
» Use of lower aspect ratio targets
» Reduced growth of hydro-instability

(@ > Higher energy gain
» Use of less laser energy




KrF Light helps the target physics (2)

« KrF has most uniform target illumination of all ICF lasers.
— Reduces seed for hydrodynamic instability

Actual Nike KrF focal profile

« KrF focal profile can zoom to "follow" an imploding pellet.
— More laser absorbed, reduces required energy by 30%

Early time
/ Nike
, zoomed
\ focus

Late time




Shock Ignited (SI) direct drive targets®

Pellet shell is accelerated to sub-ignition velocity (<300 km/sec), and ignited
by a converging shock produced by high intensity spike in the laser pulse.
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Simulations show very high gains with KrF driven shock
ignition — similar to those predicted for Fast Ignition.

Peak gains from1-D simulations

High resolution 2-D
simulations
Gain =102 @ 521 kJ
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Shock ignition benefits from shorter A and zooming
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Simulations predict sufficient energy gains

(G) for development of energy application.

G ~100 with a 500kJ KrF laser | > Fusion Test Facility (FTF)

G ~170 with a 1IMJ KrF laser
-> Fusion Power plants

G ~250 with a 2 MJ KrF laser

Desire Gxn=>10 for energy application
n = laser wall plug efficiency = 7% for KrF
- need G > 140




Nike Is employed for studies of hydrodynamics and LPI

BACKLIGHTER

BEAMS Orthogonal imaging of

planar targets with monochrome xrays

44 overlapped ISI-smoothed
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Laser Plasma Instabllity limits the maximum intensity

»Can produce high energy electrons that preheat DT fuel
» Can scatters laser beam, reducing drive efficiency
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N4 instability thresholds
(single planar beam)



Nike experiments are exploring thresholds for quarter-critical
density laser plasma instability

Signal (arb. units)
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325 ps, <1 kJ laser pulses in 40 overlapped beams
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Longer density scalelength plasma produced by ns

laser pulses reduced thresholds (as expected)

1 ns pulse 325 ps pulse
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~60 um with 325 ps pulse
~100um with 1 ns pulse

Similar physics to that observed with A=351 nm lasers, but
guarter critical instability thresholds are higher. (as expected)



KrF, LPI and Direct Drive

Both theory and experiment indicate use of KrF helps
suppress laser plasma instability.

1 Thz bandwidth used in current experiments, 3Thz available
with Nike.that may help further supress LPI.

May not be able to operate much above quarter critical
Instability thresholds during compression stage of Sl.

Can reduce peak intensity during compression by increasing
aspect ratio, but limited by hydro-instability.

Use of shorter A and possibly greater Aw are the only
unambiguously positive actions to reduce risk from LPI.

Preheat from LPI hot elections should not an issue during
igniter pulse provided T, < 100 keV per LASNEX

simulations by J. Perkins.



There has been continued progress in high-
energy high-repitition rate KrF laser technology
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Electra Krypton Fluoride (KrF) Laser
Laser Energy: 300 to 700 Joules

Repetition rate: up to 5 pulses per second
Continuous Runs: 10 hrs at 2.5 Hz (90,000 shots




Path to much higher durabillity for Electra
identified and developed.

Replace spark-gap switched
pulse power with all solid
state system.

Eliminate “late time” voltage
on diode that causes erosion
when plasma between anode

and cathode close.




Progress in KrF science and technology

Laser Fusion

All solid state 10 Hz 180 kV 5KA pulse Demonstrated two methods to suppress
power system >107 shots continuous E-beam instability on Nike Main amplifier

iy

'No physics limit on diode size

Componeﬁis show > 300 M h\ts, no failures Ceramic Cathode Patterned cathode
High efficiency E-beam transport to gas >7% wall-plug efficiency looks feasible.
2 e laser gas
' : Ry yo— Intrinsic (experiment) 12%
grd | deiused ': Pulsed power (experiment) 82%
Hibachi @ 800 kV (experiment) 80%
s Optical train to target (est) 95%
. Ancillaries (est) 95%
o i iron |E] emitter
B P PR TR I TU Global Efficiency 7.1%

electron beam guided by tailored magnetic field



IFE vision

A primary goal of the IFE community should be to
develop the technologies for, construct and operate
a high repetition rate inertial fusion test facility (FTF)
In the decade immediately following NIF ignition.

Adapted from suggestion by Professor Said Abdel-Khalik

See Thursday afternoon presentation by John Sethian: “The need for an Inertial Fusion
Engineering Test Facility”



We believe this IFE vision can and
should be implemented!

IFE technology
development

I

|FE reactor
design

I

Advances in IFE
target physics

Stage 1

Stage Il
Commercial fusion
~2025 power to the grid
Fusion Test Prototype GW,
= | Facility Power Plant(s)

® Develop/test fusion materials & components
® Develop/test operation procedures

® Breed tritium fuel
®* DEMO net power production (~50 MW,)

Stage Il




Summary

e Shock ignited direct drive continues to look very
attractive for the energy application.

e Both simulations and experiments indicate KrF

light significantly improves the laser-target
Interaction physics.

* Good progress in the S&T of E-beam pumped
KrF towards the goal of obtaining the high
system durability needed for IFE.
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